ntel ha anunciado el lanzamiento de su chip de investigación cuántica más reciente, Tunnel Falls, un chip de silicio de 12 qubits que la compañía pone a disposición de la comunidad de investigación cuántica. Además, la compañía está colaborando con el Laboratorio de Ciencias Físicas (LPS) de la Universidad de Maryland y el College Park’s Qubit Collaboratory (LQC) para avanzar en la investigación de la computación cuántica.
Actualmente, las instituciones académicas no disponen de equipos de fabricación de gran volumen como Intel. Con Tunnel Falls, los investigadores pueden empezar a trabajar inmediatamente en sus proyectos, en lugar de intentar fabricar sus propios dispositivos. Como resultado, se hace posible una gama más amplia de experimentos, incluyendo aprender más sobre los fundamentos de los qubits y los puntos cuánticos y desarrollar nuevas técnicas para trabajar con dispositivos con múltiples qubits.
Índice de temas
Primeros laboratorios cuánticos
Para ello, Intel colabora con LQC como parte del programa Qubits for Computing Foundry (QCF) a través de la Oficina de Investigación del Ejército de EE.UU. para proporcionar el nuevo chip cuántico de Intel a los laboratorios de investigación. La colaboración con LQC ayudará a democratizar los qubits de espín de silicio permitiendo a los investigadores adquirir experiencia práctica trabajando con matrices a escala de estos qubits. La iniciativa pretende reforzar el desarrollo de la mano de obra, abrir las puertas a nuevas investigaciones cuánticas y hacer crecer el ecosistema en general.
¿Qué es Tunnel Falls?
Se trata del primer dispositivo qubit de espín de silicio de Intel que se pone a disposición de la comunidad investigadora. Fabricado en obleas de 300 milímetros en la planta de fabricación D1, el dispositivo de 12 qubits aprovecha las capacidades de fabricación industrial de transistores más avanzadas de Intel, como la litografía ultravioleta extrema (EUV por sus siglas) y las técnicas de procesamiento de compuertas y contactos. En los qubits de espín de silicio, la información (el 0/1) se codifica en el espín (arriba/abajo) de un solo electrón. Cada dispositivo qubit es esencialmente un transistor de un solo electrón, lo que permite a Intel fabricarlo utilizando un flujo similar al empleado en una línea de procesamiento lógico de semiconductores complementarios de óxido metálico (CMOS, por sus siglas) estándar.
Intel cree que los qubits de espín de silicio son superiores a otras tecnologías de qubits por la sinergia que ofrece con los transistores de vanguardia. Al tener el tamaño de un transistor, son hasta un millón de veces más pequeños que otros tipos de qubits que miden aproximadamente 50 nanómetros cuadrados, lo que potencialmente permite un escalado eficiente.
Además, la utilización de líneas de fabricación CMOS avanzadas permite a Intel utilizar técnicas innovadoras de control de procesos para mejorar el rendimiento y las prestaciones. Por ejemplo, el dispositivo Tunnel Falls de 12 qubits tiene una tasa de rendimiento del 95% en toda la oblea y una uniformidad de voltaje similar a la de un proceso lógico CMOS, y cada oblea proporciona más de 24.000 dispositivos de puntos cuánticos. Estos chips de 12 puntos pueden formar de cuatro a 12 qubits que pueden aislarse y utilizarse en operaciones simultáneamente dependiendo de cómo opere la universidad o el laboratorio sus sistemas.
En los próximos meses, la compañía trabajará para mejorar el rendimiento de Tunnel Falls e integrarlo en su pila cuántica completa con el kit de desarrollo de software (SDK, por sus siglas) cuántico de Intel. Además, Intel ya está desarrollando su chip cuántico de próxima generación basado en Tunnel Falls; su lanzamiento está previsto para 2024. En el futuro, Intel tiene previsto asociarse con otras instituciones de investigación de todo el mundo para construir el ecosistema cuántico.